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The Geometry of Coincidence-Site Lattices 
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The density of coincidence sites in cubic crystal lattice planes in coincidence-site-related crystals with a 
multiplicity less than or equal to 31 has been investigated. A comprehensive table of lattice planes 
with a high density of coincidence sites for each of the twenty-two coincidence-site relationships is 
presented. In addition a complete list of the alternative ways of describing the twenty-two coincidence- 
site relationships as defined by Friedel in 1926 is presented. 

1.  I n t r o d u c t i o n  

There is now considerable evidence that the coinci- 
dence-site lattice defined by the common sites of two 
interpenetrating lattices is important in relation to the 
structure of grain boundaries in cubic crystals (Bran- 
don, 1966). In particular, field-ion microscopy studies 
of the refractory metals (Brandon, Ralph, Rangana- 
than & Wald, 1964; Morgan & Ralph, 1967) have 
shown that the two crystals adjacent to a grain bound- 
ary often possess lattice sites defining a superlattice 
(the coincidence-site lattice) common to both crystal 
lattices. These experiments also indicate that such grain 
boundaries consist of a series of steps, and that the 
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Fig. 1. The (1i0) plane of projection of the matrix and anneal- 
ing twin lattices of a face-centred cubic crystal. The matrix, 
twin and coincidence-site lattice sites in the plane of the 
paper are represented by closed squares, circles and triangles 
respectively, and the matrix, twin and coincidence-site 
lattice sites in the next parallel (1T0) plane above and below 
the plane of the diagram are represented by open squares, 
circles and triangles respectively. The traces of the (111), 
(112) and (117) planes are indicated by T(Ill), T(l12) and 
T(117) respectively. The directions [1121, [1111 and [7721 are 
parallel to T(ll 1), T(11~) and T(117) respectively. 

steps are planes that contain a high density of coinci- 
dence sites. The importance of the coincidence-site 
lattice concept is also evident from the results of recent 
electron-microscopy studies. Sargent (1968) has shown 
that steps in annealing twin boundaries in aluminum 
crystals define planes of the matrix and twin crystals 
for which all lattice sites are sites of the coincidence 
site lattice defined by the matrix twin crystal orienta- 
tion relationship. Similar observations in austenitic 
stainless steel have been reported more recently by 
Vaughan (1969). Schober & Balluffi (1970) have made 
quantitative observations of orthogonal grids of grain 
boundary misfit screw dislocations in (001) twist 
boundaries in gold. These authors have shown that in 
the vicinity of coincidence site relationships the geo- 
metrical properties of the grids are consistent with those 
predicted for a boundary structure consisting of a 
suitable misfit dislocation grid embedded in the appro- 
priate high density coincidence site interface. 

As an aid to the interpretation of experimental re- 
sults, there is a requirement in the case of cubic crys- 
tals for a comprehensive set of tables of coincidence- 
site relationships and a table of planes possessing a 
high density of coincidence sites for each of the pos- 
sible coincidence site relationships. Both of these tables 
are presented in this paper and apply to primitive, 
body-centred and face-centred cubic crystals. 

When a rotational symmetry operation is applied to 
a point lattice, a lattice is produced which is completely 
coincident with the original lattice. However, the 
application of a rotation other than a rotation asso- 
ciated with a symmetry element of the lattice may 
result in partial coincidence of the two lattices. The 
lattices related by such a rotation have certain lattice 
sites in common, which in themselves define a lattice 
termed the coincidence-site lattice. 

Friedel (1926) has shown that two identical cubic 
lattices that are related by a coincidence site lattice 
may be considered to be related by a rotation of 180 ° 
about the normal [hlh2h3] to a rational plane. The 
fraction of sites of each of the two interpenetrating 
lattices which are coincidence sites - that is sites which 
are common to both la t t ices-  is equal to Z'-z, where 
the multiplicity 22 is given by X =(h~ + h~ + h}), or 
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X = ( h  2 + h 2 + h])/2 for (h 2 + h 2 + hi) odd or even respec- 
tively. 

Annealing twins in the face-centred cubic metals for 
example possess a coincidence-site lattice of multipli- 
city Z'=3. The parent crystal and annealing twin lat- 
tices are related by a rotation of 180 ° about a (I 11) 
direction, and the interface between the two crystals 
is usually the {111 } plane normal to the axis of rotation. 
The coincidence-site lattice associated with the twin 
related crystals is illustrated in Fig. 1, which shows the 
(1]0) plane of projection plot of both parent and twin 
lattices. The (1i0) face-centred cubic planes have a 
two-fold stacking sequence, the parent, twin and coin- 
cidence site lattice points in the plane of the diagram 
are represented by closed squares, circles and triangles 
respectively, whereas the lattice points in the next 
parallel (1]0) plane above and below the plane of the 

diagram are represented by open squares, circles and 
triangles respectively. The trace of the interface plane 
between the twin and parent crystals is represented by 
a bold continuous line. It is to be noted that the inter- 
face plane may be chosen so that all lattice points in 
this plane are coincidence sites. Planes which consist 
only of coincidence sites are expected to have the 
lowest energy and therefore are the most likely to form 
the boundary between two crystals. Examples of planes 
in addition to the (111) plane in which all sites may 
be coincidence sites are the (112) and (117) planes whose 
traces are represented by bold broken lines in Fig. 1. 
These planes have also been shown to be interface 
planes between parent and annealing twin crystals in 
aluminum (Sargent, 1968). The maximum fraction of 
sites in the lattice plane of particular Miller indices 
which can be coincidence sites will be represented by 

Table 1. Planes with a high density of  coincidence sites for the twenty-two coincidence-site relationships 
with a multiplicity less than or equal to 31 

The twenty-two coincidence-site relationships are described by a rotation of 180 ° about the direction with indices given in column 
2 of the Table. A detailed description of the remainder of the Table is given in the text. 

Multi- Axis of wi" 
plicity .rotation 

3 111 (11~) 101 ~[11 Oil III ~11 1~1 11~ 221. 212. I22. 411, 141. 114. 431 41~- 
341 ~14 143 134 511. 151. 115. 52'[ 5i2 25] 2[5 i52 
525 522 252 225 441 414 144 541 514 451 41~ 1~4 
145 5;[P-. 52;[ ;[52 ;[25, 2b'.4. 2-45. Yll 171 117 55T 515 
I55 721. 713" ~71~ 31Y. 173, 137, 552. 525, 255, 722 272 
227 544 454 ° 44~ 

5 012 (031) 100 021 0~2 012 02T 031 01~ 043. 031[. OYT. 017, "-512 -'521. ±531 :51~ 
:543. "- 53;[, *-542 1524 

7 123 120 112 1.01 123 312 331 4L~ 24"[ 12i[ 531 315 153 5111 415 154 
~23. 362. 236. 

9 122 (;[11) 031 112 i02 122 1111 511a 2~4 245 l~2b 12% 255d' :3: l!la 211d 12T¢ 
g20 2~1 213 14]. h4. 15! 115 

11 113 (332-) 101 131 0i3 113 333 225 441 

13a 023 (051) 100 032 023 023 03~ 051 015 

13b 134 1~- 112 102 134 413 ~41 

15 125 121 212 1.02 125 245e :3: RIO 120e 3101 !301 315 3151 1351 135 
:5: ~1~ 21]I 12I 1121 2~13 2~3 122. ~u3 T41~ 1.14~ 5113 
15~3 1153 

lYa 014 (053) 100 041 0!4 014 04i 053 055" 

ITo 223 (33~ 102 1.32 033 223 33~ II~" 55i" 

19 133 (511) O~I 113 ~03 133 511 ?22 ~44 

21~ 145 l]O 144 "~I 145 514 ;(51 :3: 331 213 !32 5131 3511 1~'51 :Y: lff 
2111 1211 1121 2213 2123 1~23 4113 1413 11;[3 5113 I51~ 1153 

21b 124 0~1 212 !04 124 :3: ~121 231 1231 531.1 315 ]53 :Y: 1"~11 211 1211 
1.121 ~213 2123 1223 4~13 1~'13 1~43 5113 151~ !151 

23 136 0~T 212 i"03 136 

25~ 034 (071) 100 043 034 034 043 07 1 01~ :5: 0211 01~1 031"1 013i --153~1 "5131 

25b 345 2~"f 102 334 345 :5: 2101 "L201 3101 1301 3151 ~151 1351 1351 

27a 127 274 ~01 013 127 :3: 1221 4111 51~ :9: 2111 1211 1.121 ~21] 212] 1111 
11~ 151 I15 

27b 115 (55~) 111 T41 015 115 552 :3: 2211 11111 :9: 2111 1.211 1121 212~ L~2) 41I 
141 5113 1513 

29a 234 132 ~ 3  104 234 

29b 027 (0'73) I00 052 035 025 053 073 03~' 

31a 156 1~2 113 103 156 561 615 

31b 23? ~"20 251 014 237 
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a -1, where a is a rational factor of Z' being equal to 
one when all sites in a lattice plane are coincidence 
sites. In § 2 of this paper a procedure for determining 
the value of a for a particular lattice plane is described, 
and the planes with a values less than a =Z" are tabu- 
lated for a wide range of Miller indices for all coin- 
cidence site relationships with X_< 31. 

The orientation relationship between the parent and 
twin crystals illustrated in Fig. 1 may, for example, 
also be described by rotation of 180 ° about [112] or 
70.5 ° about [1]0]. In general there are twenty-four 
different ways of describing the orientation relation- 
ship between two cubic crystals and hence twenty-four 
ways of describing the orientation relationship between 
two coincidence-site-related crystals. In § 3 of this paper 
the different ways of describing the orientation rela- 
tionship between the coincidence-site-related crystals 
are tabulated for the coincidence-site relationship with 
Z'< 31. The ways in which the table may be used to 
aid the interpretation of experimental results is also 
described. 

2. The density of coincidence sites in a crystal 
lattice plane 

All coincidence-site lattices with a multiplicity L" less 
than or equal to 31 have been considered, and the 
coincidence-site lattice relationships which arise in the 
range S <  31 are listed in Table 1 where Z" is given in 
column 1 and the corresponding axis of rotation 
[hi h2 h3] is given in column 2. For some values of X 
two coincidence-site relationships which are not crys- 
tallographically equivalent arise; they are represented 
byZ'a and Z'b. In some cases a rotation of 180 ° about 
axes of a different form give rise to crystallographically 
equivalent relationships, as for example when the two 
axes are orthogonal and together define a symmetry 
plane. These alternative descriptions are given in col- 
umn 3 of Table 1. 

The following procedure was used for determining 
the Miller indices of planes parallel to a plane in the 
crystal lattice in which all sites can be sites of the 
coincidence-site lattice, or in which a -1 of the crystal 

Table 2. The alternative ways of  describ&g the twenty-two coincidence-site relationships with 
a multiplicity less than or equal to 31 

An asterisk indicates the description associated with the smallest angle of rotation for a particular multiplicity. 

Axis Angle 
of Multipli-. of 
rota- city rota- 
tion tion 

I00 5 * 36.9 310 5 180 411 9 180 511 7 
13a* 22.6 7 115.4 II 129.5 9 
17a* 28. i n 144.9 17~ 93.4 13a 
25a* 16.3 13b 76.7 19b 1.53.5 19a 
29b* 43.6 19a 93.0 27a 109.5 27a 

23 55. ~ 2"/b 70.5 27b 
llO 3 70.5 31b 

9*  38.9 311 3 146.4 331 5 154.2 
11 * 50.5 5 95.7 7 110.9 432 15 
17"o 86.6 9 6% 1 11 82.2 19a 
19a* 26.5 11 180 17b 63.8 27a 
2To* 31.6 15 50.7 19a 180 29a 

15 117.8 23 130.7 
Ill 3 * 60 23* 40.5 25b* 51.7 520 15 

7 * 38.2 25b 168.3 19b 
13b* 27.8 27a 79.3 421 I1 155.4 27b 
19b* 46.8 31b 126.6 15 113.6 29b 
21a* 21.8 21b 180 
31a* 17.9 320 7 149.0 23 85.0 521 15 

11 100.5 25b 132.8 17b 
210 3 131.8 13a 180 23 

5 180 17b 122.0 332 II 180 31b 
7 73.4 19b 71.6 13a 133.8 
9 96.4 29a 84.1 19a 99.1 441 17a 

15" 48.2 31b 54.5 23 155.9 211) 
21b 58.4 29a 76.0 29a 
23 163.0 321 7 180 31a 114.8 
27a* 35.4 9 123.8 522 17b 
29a 112.3 15 86.2 430 13b 157.4 21b 

15 150.1 17b 118.1 29b 
211 3 180 23 102.6 25a 180 

5 101.5 25b 63.9 25b 90 433 17b 
7 135.6 29a 136.4 19a 

II 63.0 322 9 152.7 25a 
15 78.5 13a 107.9 431 13b 180 
21b* 44.4 17b 180 15 137.2 530 17a 
25b 156.9 2ta 128.3 211) 103.8 19b 
29a 149.6 21b 79.0 27a 157.8 25b 
311)* 52.2 31b 80.7 

410 9 152.7 531 9 
221 5 143.1 13b 107.9 510 13a 180 U 

9 90 17a 180 15 137.2 15 
9 180 21a 79.0 21a 103.8 21b 

13b 112.6 21b 128.3 27b 157.8 29a 
17b* 61.9 31a 80.7 
25b 73.7 
29a* 46.4 

158.2 610 19a 
120.0 23 
92.2 31a 
73.2 
60.0 532 19b 

180.0 21b 
137.9 27a 

159.0 611 19a 
121.8 21b 
94.3 27b 

180.0 
443 21b 

159.0 25a 
121.8 
94.3 540 21a 

180.0 25b 

180.0 621 21b 
139.9 25b 
107.7 
159,3 541 21a 

23 
160.3 29a 
124.9 
97.9 533 11 

13b 
160.3 17a 
124.9 23 
97.9 31b 

180.0 542 23 
142. I 27a 
111. l 

631 23 
180.0 25b 
142.1 31b 
111.1 

632 25b 
160.8 29a 
126.2 
99.6 543 25b 
80.4 27a 
66.6 

710 25a 
27a 

161.3 551 13a 164.1 733 17b 166.1 
127.5 15 134.4 19b 139.7 
101:2 19b 110.0 23 117.2 

25b 91.2 29b 98.9 
180. 0 
144.1 711 13b 164.1 751 i9a 166.8 
114.0 15 134.4 211) 141.8 

19a 110.0 25b 120.0 
180.0 25a 91.2 31b 102.1 
144.1 
114.0 641 27b 164.4 753 21b 167.5 

31b 135.2 23 143.6 
162.3 27b 122.5 
129.8 720 27a 164.4 

31b 135.2 91l 21a 167.5 
162.3 23 143.6 
129.8 552 27b 180.0 27a 122.5 

29b 149.6 
162.3 931 23 168.0 
129.8 721 27a 180.0 25b 145.1 

29a 149.6 29a 124.7 
180.0 
145.7 544 29a 164.9 755 25b 188.5 
116.6 271) 148.4 

722 29a 164.9 31a 128.6 
162.7 
130.8 730 29b 180.0 771 25a 168.5 
105.3 31b 150. 6 27a 148.4 
86.3 311) 126.6 
72.2 553 15 165.2 

17a 137.3 773 27a 169.0 
163.0 21a 113.9 2~b 147.7 
131.8 27b 95.3 

951 27a 169.0 
180 731 15 166.2 29a 147.7 
147. I 17b 137.3 
118.9 21b 113.9 953 29a 169.4 

27a 95.3 31b 148.7 
163.7 
133.6 645 31b 165.4 775 31b 189.7 

180.0 650 31a 165.4 11,1,I 31a 189.7 
148.4 

732 31b 180.0 
180. o 
148.4 651 3ta 180.0 

A C 27A - 6 
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lattice sites can be coincidence sites for a a rational 
factor of Z not equal to Z'. For a particular coincidence 
site relationship the value of cr is the same for a parti- 
cular plane in all three cubic Bravais lattices. For 
convenience the primitive cubic lattice will be con- 
sidered. 

The Miller indices of planes and directions in one 
of the crystal lattices (lattice 1) of the coincidence- 
site-related lattices will be referred to the orthonormal 
cubic lattice basis c~, c2, c3. For convenience the two 
basis vectors d~ and d2 of the basis dl, d2, d3 defining a 
primitive cell of the coincidence lattice are chosen to 
be in the plane with normal [hi h2 h3], and hence in 
cubic crystals the plane with Miller indices (h~ h2 h3). 
This plane is a lattice plane of the two crystal lattices 
and of the coincidence-site lattice. Procedures for 
determining the two vectors da = hc~ and d2 = mici which 
must define a primitive cell in the (hx h2 h3) plane have 
been described by Jaswon (1965) and Bevis (1969). 
When the lattice planes (hi h2 h3) have an odd stacking 
sequence (Jaswon & Dove, 1955) the vector d 3 is 
chosen to be normal to this plane, so that d3 =h~ci. In 
the case of a plane with an even stacking sequence the 
vector d 3 may be taken to be any primitive vector of 
the vectors ½(h + mi + &)ci, ½(h + m0c~, ½(h + h~)c~ or 
½(mi+&)cl, and in general will be represented by 
d3=n~ci. The relationship between components of a 
vector referred to the orthonormal crystal lattice basis 
and the coincidence site lattice basis, represented by 
x=u~c~ and x=v~di respectively is given by v~=w~juj 
where 

(l~mln~) 
wij= 12 mz n2 . 
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The corresponding transformation of Miller indices is 
given by 

bi =wjia~, (1) 

indices (ea e2 e3) with respect to the lattice 2 basis given 
by e i = rjiaj where rij = - 8ij + 2h~hj(hlchk) -~. The same 
matrix wij applies for lattice 2 and lattice 1. 

With the aid of a digital computer the authors have 
used equation (1) to determine the density of coin- 
cidence sites in crystal lattice planes for the coincidence 
site relationships given in column 2 of Table 1. The 
three rows of the matrices w~j. for the twenty-two coin- 
cidence site relationships are given in columns 4, 5 and 
6 of Table 1. For each coincidence-site relationship the 
Miller indices of the following crystal lattice planes 
are given: 

(a) planes (al a2 a3) in which all sites can be coincidence 
sites, but with the limitation that only the fifty-four 
most densely packed primitive cubic lattice planes are 
considered, (b) planes (an a2 a3) in which a fraction 1/a 
sites can be coincidence sites, but with the limitation 
that only the first nine most closely packed primitive, 
body-centred and face-centred cubic lattice planes are 
considered. The variants of planes given in Table 1 
apply for the description of the coincidence-site rela- 
tionship given in column 2 of the Table. The planes 
are given in columns 7-18 of Table 1 and are listed 
across the page, the planes with a fraction 1/o of 
coincidence sites are preceded by :a:. A difference in 
the density of coincidence sites in parallel lattice 1 and 
lattice 2 planes is indicated in the following way. If 
the density of coincidence sites in the lattice 2 plane 
parallel to the lattice 1 plane given in Table 1 is equal 
to 1/X, then the indices of the lattice 1 plane are 
followed by a dot. If the Miller indices of a lattice 1 
plane are followed by a number, then the reciprocal of 
the number is the density of coincidence sites in the 
parallel lattice 2 plane. In general the indices of the 
parallel lattice 2 planes do not fall within the range of 
planes investigated. However in cases where both planes 
fall within the range investigated the pairs of planes are 
followed by the same letter. 

where (aQ and (b0 are the Miller indices of a plane 
referred to the crystal lattice and coincidence site lattice 
bases respectively. If the vector b~d~ is a primitive lattice 
vector, then the interplanar spacing of the planes 
(bl b2 b3) is equal to the interplanar spacing of the 
parallel planes (a1 az a3), so that only 1/Z sites in the 
plane (al a2 a3) are coincidence sites. If however b~d~ 
is not a primitive reciprocal lattice vector, and is equal 
to bid ~ =pb~ d t where p is an integer and b~di is a primi- 
tive reciprocal lattice vector, then the interplanar 
spacing of the planes (al a2 a3) is then lip that of the 
planes (b'l b'zb'3). In this case a fractionp/Z= 1/0- sites 
in the plane (al a2 a3) are coincidence sites. When 
p = S  then all sites are coincidence sites. 

The densities of coincidence sites in parallel lattice 
1 and lattice 2 planes are in general not equal. The 
density of coincidence sites in a lattice 2 plane can be 
determined in exactly the same way as for lattice 1 
planes. The Miller indices of the plane in lattice 2 
parallel to the (al az a3) plane in lattice 1 has the Miller 

3. Alternative descriptions of coincidence-site 
relationships 

In an experimental determination of the orientation 
relationship between two crystals of interest, for exam- 
ple in the case of two coincidence-site related crystals, 
the orientation relationship could be that described by 
column 2 of Table 1 or in twenty-three other ways 
which describe the same orientation relationship (Lange, 
1967), and which result when any particular original 
rotation is combined with the twenty-four proper 
symmetry rotations associated with a cube having 
identical faces. Thus, unless the twenty-four ways of 
describing the orientation relationship determined ex- 
perimentally are deduced, and then compared with the 
relationships of column 2 of Table 1, it is not possible 
to establish readily that a coincidence site relationship 
is operative. Only a limited number of the alternative 
ways of describing the orientation relationships of 
column 2 of Table 1 have been given previously. The 
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most comprehensive list, which is, however, limited in 
extent, has been given by Ranganathan (1967), and 
are the results of an application of a procedure 
(Ranganathan, 1966) for determining the possible Z" 
values and corresponding angles of rotation associated 
with a particular axis of rotation. The authors have 
determined the axes of rotation and the corresponding 
angles of rotation (co) for all twenty-four ways of 
describing each of the twenty-two coincidence-site re- 
lationships given in column 2 of Table 1. These 
results are presented in Table 2 with the limitation 
that only the form of the axes of rotation are given. 
However, an experimentally determined orientation 
relationship may be compared with the relationships 
presented in Table 2, thus allowing the operative coin- 
cidence-site relationship to be determined readily. The 
more convenient orientation relationship given in 
column 2 of Table 1 may then be adopted, and the 
further crystallographic information contained in Table 
1 utilized directly. 

In Table 2 the results are presented in multiples of 
three colums, the first, second and third column in 
every three gives the axis of rotation, the multiplicity 
and the angle of rotation (co) respectively. For the 
[100], [110] and [111] symmetry axes the angles of 
rotation (90-co, 90+co, 180-co), (180-o9) and (120 
-co, 120+o)) respectively also give rise to the coinci- 
dence-site relationships indicated in column 2. The 
relationship which gives the smallest value of co for a 

particular value of Z is indicated by an asterisk. Table 
2 effectively gives the results of an application of the 
procedure described by Ranganathan (1966) for all 
possible rotations about axes with indices [12 12/3] for 
{(11)2+ (/2)2+ (/3) 2} < 123 which give rise to the coinci- 
dence site relationships with ~ < 3 I. 

The authors are indebted to Mr E. B. Crellin for 
valuable discussions. The award of an S. R. C. student- 
ship is acknowledged by one of us (AFA). 
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The Effect of Refraction in the Small-Angle Diffraction of X-rays from Stacked Lamellae 

BY J. M. SCHULTZ* 

Department of  Material Science, Stanford University, Stanford, California 94305, U.S.A. 

(Received 25 May 1969 and in revised form 13 April 1970) 

An expression for the scattering of X-rays from a regular stack of lamellae is developed, releasing the 
prior restraint that no refraction may occur. The effect of refraction is to cause deviations from the 
classical Bragg condition. Further, a condition of total reflection is shown to occur within systems 
whose lamellar spacings are greater than a critical value. 

Statement of the problem- 

The analysis of X-ray scattering data generally pro- 
ceeds through a consideration o f  the amplitude of scat- 
tering A(S) as given by 

l ~(X) exp {2rdS. X}dv,,. A(S)=Ae(S) (1) 

Here, Ae(S), 4, X, S, and v x have their usual meanings: 
amplitude of scattering by an isolated electron, electron 

* On leave from Department of Chemical Engineering, 
University,of Delaware, Newark, Delaware 19711, U.S.A. 

density, real space vector, reciprocal space vector, and 
real space volume. This expression is rigorously correct 
(in the kinematic approximation) only if (a) the medi- 
um is non-absorbing and (b) the vector S is permitted 
to vary as the X-ray beam traverses regions of differing 
refractive index. Indeed, absorptive and refractive cor- 
rections are not needed in the analysis of diffraction 
line breadths and peak positions; e.g., the relative er- 
rors in atomic positional analysis are of the order of 
10-5 and can safely be ignored. However, for the parti- 
cular case of diffraction from a lamellar system whose 
elements are 100/~ or more in thickness both absorp- 
tive and refractive effects can become large. The under- 
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